

Clear Path 465
I-465/I-69 Interchange
Reconstruction & ATL
Noise Meeting
August 7, 2019

Agenda

- Introductions
- Project overview and status
- Noise basics
- Noise analysis process
- Noise barrier evaluation
- Proposed noise barrier locations
- Property owner survey

Introductions

Indiana Department of Transportation (INDOT)

- Runfa Shi, Project Manager
- Brandon Miller, Environmental Services
- Rickie Clark, INDOT Public Involvement Manager

Parsons project team

- Mark Perron, Project Manager
- Dan Miller, Environmental Services Manager
- Tony Pakeltis, Noise Analyst

Clear Path 465 Project Overview

- Reconstruct I-465 from White River to Fall Creek
- Reconstruct I-69 / Binford Boulevard from 75th Street to 86th Street
 - I-465 / I-69 Interchange Modification
 - Partial Ramp Reconstruction at I-465 / Allisonville Road and I-69 / 82nd Street
 - I-465 and I-69 Added Travel Lanes


Purpose and Need

- Improve overall traffic operations by increasing capacity
- Improve safety
 - Reduce total number of crashes and crash rates (crashes / mile / year)
 - Decrease the fatality / injury severity percentages

Project Area

Project Limits:

White River bridge to Fall Creek bridge

Number of Lanes:

- Existing: 3 through-lanes + 1 auxiliary lane between interchanges
- Proposed: 4 through-lanes + 1-2 auxiliary lanes between interchanges

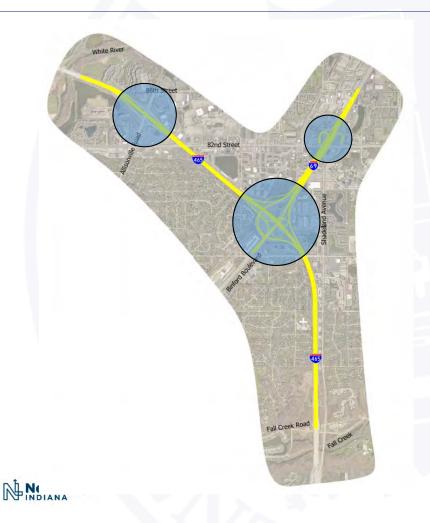
Key Features:

- Reconstruct inside shoulders and construct lanes to outside
- I-465 constructed off-line through I-69 interchange
- No work to existing overpass bridges carrying Allisonville Road, 82nd Street, and 75th Street
- No major work to existing Allisonville Road interchange

Project Limits:

75th Street to north of 82nd Street

Number of Lanes:


- Existing: 4 through-lanes + 0-1 auxiliary lane between interchanges
- Proposed: 4 through-lanes + Collector/Distributor (C/D) roadway

Key Features:

- Movements to 82nd Street and Binford Boulevard on C/D roadway
- SB Binford Boulevard now exits off I-69 before 82nd Street

I-465 and I-69

- Partial cloverleaf with semi-directional ramps
- New high-speed ramp for EB I-465 to NB I-69
- Increased ramp capacity with more lanes
- Separating interstate from local traffic (i.e., EB exit to NB I-69 is separated from exit to 82nd Street C/D roadway).

I-69 and 82nd Street

- Folded Diamond
- 82nd Street on-ramp to SB I-69 splits to both I-69 and Binford Boulevard before entering SB I-69. This removes a weaving movement that degrades safety and mobility.

I-465 and Allisonville Road

- Existing single-point interchange
- Minor ramp reconstruction

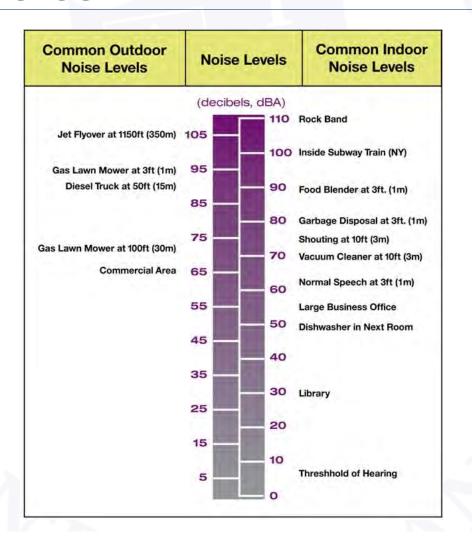
Project Status

Environmental

- Right-of-Way
 - New Right-of-Way/Relocations
- Streams, Wetlands, and Other Waters
- Cultural Resources (Historical/Archaeological)
- Section 4(f)
 - 71st St. Trail
 - Historic Properties/Districts No adverse effect
- Environmental Justice (low income & minority populations)
- Noise

Project Status

- Late 2019/Early 2020
 - Finalize Environmental Assessment (EA)
 - Hold Public Hearing
 - Finding of No Significant Impact (FONSI)
- Construction Letting Fall 2021
- Design Team is working to determine the construction duration.

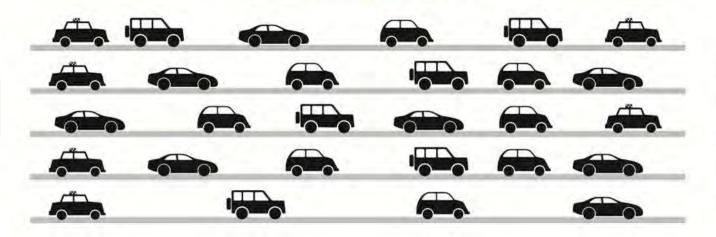


- Noise is unwanted sound
- Sound is a pressure fluctuation caused by vibration (source)
 - Travels through a medium such as air (path)
 - Capable of causing response in human ear & brain (receiver)
 - Sound levels are measured in decibels

Change in Sound Level	Perception	
3 decibels	Barely Perceptible	
5 decibels	Clearly Perceptible	
10 decibels	Twice as Loud	

2,000 vehicles per hour sound twice as loud (+10 dBA) as 200 vehicles per hour.

Traffic at 65 MPH sounds twice as loud (+10 dBA) as traffic at 30 MPH.



One truck at 55 MPH sounds as loud as 28 cars at 55 MPH.

Federal Highway Act of 1970

 Mandated Federal Highway Administration (FHWA) to develop standards for traffic noise. Regulations are found in 23 CFR 772.

INDOT Traffic Noise Policy

- States are required to develop & implement noise policy based on 23 CFR 772 standards. FHWA must review and approve state policies.
- Noise analysis is required for all Type I highway projects that require FHWA approval. Also applies to all Type I projects on roadways that are part of the Interstate System.
- The most current update of INDOT's Traffic Noise Policy was July 2017.

Noise Analysis Process

- Noise impacts occur when either
 - Predicted sound level approaches or exceeds Noise Abatement Criteria (NAC)
 - 67 decibels for residences
 - Approach NAC = 66 decibels
 - Predicted sound level substantially exceeds existing sound level
 - 15+ decibels increase

Noise Analysis Process

- Identify areas of frequent outdoor human use
 - Front or backyards of residences, balconies or patios of apartments, outdoor seating at commercial properties, recreational areas
- Field measurement of existing noise levels
- Future noise level prediction based on year 2040 traffic forecasts
- Determine impacts
- Evaluate abatement measures for impacts

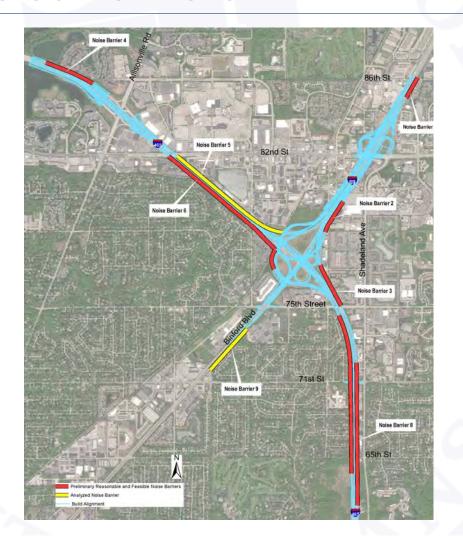
Noise Analysis Process

- FHWA Traffic Noise Model (TNM) 2.5
 - 3D modeling software used to analyze existing and projected traffic volumes & speeds
 - Roadways, pavement, terrain, grass, and receiver locations are also added to the model
 - Generates existing and predicted future noise levels
 - Identifies noise impacts
 - Evaluates noise barrier effectiveness

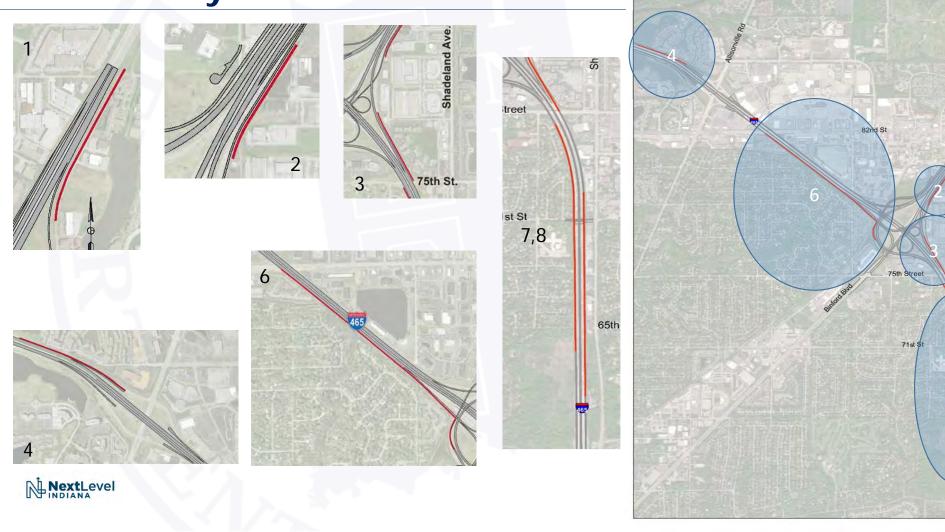
Noise Barrier Evaluation

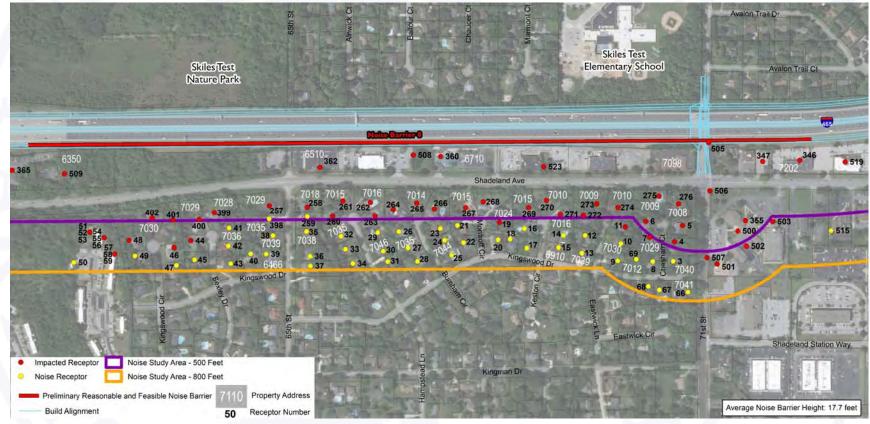
Feasible

- Acoustic Feasibility: 5 decibel reduction at a majority of impacted receivers
- Engineering Feasibility: Consider environmental, drainage, safety, and other issues to identify best location for a barrier


Reasonable

- Noise Reduction Goal
 - 7 decibel reduction for majority of receivers on property directly adjacent to the roadway.
- Cost-effectiveness
 - INDOT uses \$30/square foot to estimate barrier cost
 - Cost per benefited receptor of \$25,000 or less is considered cost-effective. Cost per benefited receptor goes up to \$30,000 if the majority of the homes were built prior to initial construction of the roadway.
- Views of Residents and Property Owners
 - INDOT considers the views of all benefited residents and property owners to determine whether a barrier is appropriate for a given location.


Evaluated Noise Barriers



Preliminary Feasible and Reasonable Noise Barriers

Preliminary Feasible and Reasonable Noise Barrier 8

East side of I-465, near 71st Street

NextLevel

Length: 4,900 feet

Avg. Height: 17.7 feet

Estimated Cost: \$2.6M

Benefited Receptors: 93

Noise Barrier 8 Additional Evaluation

	December 2018	August 2019	
Study Area Size	500 feet	800 feet	
Number of Residential Receptors Evaluated	28	110	
Noise Impacts Identified (greater than 66 decibels at residential receptors)	Yes	Yes	
Noise Barrier Analysis - Feasible			
Acoustic Feasibility (5 decibel reduction at majority of impacted receptors)	Yes	Yes	
Engineering Feasibility (No major utility, safety, drainage, or environmental conflicts)	Yes	Yes	
Noise Barrier Analysis - Reasonable			
Noise Reduction Goal Achieved (7 decibel reduction at majority of first row receptors)	Yes	Yes	
Benefited Receptors (5 decibel reduction with barrier) Residential Non-Residential	21 17	83 10	
Cost-Effectiveness (Needs to be below \$30,000 per benefited receptor)	\$96,000	\$28,000	
Noise Survey Conducted	No	Ongoing	
Views of Residents and Property Owners	Not Applicable	To be Determined	

Views of Residents and Property Owners

- Noise Barrier #8 noise surveys were mailed on July 18, 2019.
- Noise Barrier #8 survey responses are due by August 21, 2019.
- Greater than 50% response rate required or a second survey will be mailed.
- All benefited residents and property owners were surveyed.
- Per INDOT policy, INDOT will consider the opinions of all survey respondents to determine whether a noise barrier is appropriate for this location.

Noise Barrier Types

Typical noise barrier has a panel design

Noise Barrier Types

Noise wall texture is usually either block wall design or panel design

Property Owner Survey

- Turn in completed survey cards tonight
- For questions, email or call: daniel.j.miller@parsons.com (317) 616-4663
- Or mail survey cards, postmarked no later than August 21, 2019:

IN. Dept. of Transportation

c/o: Parsons

Clear Path 465 Project

Attn: Daniel J. Miller

101 W. Ohio St., Suite 2121

Indianapolis, IN 46204

Thank you for Attending!

Contact: Runfa Shi

Email: indot@indot.in.gov

Visit the project website at www.clearpath465.indot.in.gov

